• I have no disclosures
Outline

• Introduction
• Epidemiology
• Mechanism and Injury Characteristics
• Risk Factors Specific to Females
• Treatment Implications/Outcomes
• Prevention Strategies
• Future Goals
ACL Structure and Function

- Primary restraint to anterior tibial translation
- 2 bundles—anteromedial and posterolateral to control translation and rotation.
ACL Structure and Function

- A proprioceptive structure as 1% of its volume is occupied by nerve tissue
- Surrounded by synovium so it is an intraarticular and extrasynovial structure
ACL Tears in Female Athletes

• 2.3% increase per year for children between ages 6-18 in USA\(^1\)

• \(\sim 200,000\) annual incidence\(^2\)
 – Increasing steadily over 20 year period

• **Females > Males**

• Discrepancy begins after puberty\(^3\)
 – Female rates increase more
ACL Tears in Females: Character and Mechanism of Injury

- **Non-contact ACL** injury most common\(^{10-12}\)
 - Approximately 70% of ACL injuries non-contact

- **Mechanism\(^{13}\)**
 - Foot strike with LE at or close to **full extension**
 - +/- forceful valgus moment at knee
 - +/- tibial internal rotation moment

- Deceleration + cutting most common

- **Sports that require pivoting, landing, and sudden deceleration** (soccer, gymnastics, basketball, handball, field hockey, lacrosse)
ACL Tears in Females: Character and Mechanism of Injury

- Boden et al, 2009\(^\text{13}\)
 - Video analysis of non-contact ACL injuries
 - “Safe” vs “Provocative” landing positions
 - Injured athletes
 - Significantly higher hip flexion angles at contact
 - Torso posterior, knee must extend
 - Hamsting not protective in full extension (upright body posture)
 - Lateral trunk displacement
 - Quadriceps dominant when an anterior translation force is placed on the tibia
ACL Tears in Females: Risk Factors for Injury

- Extrinsic Factors?
- Intrinsic Factors?
 - Q-angle
 - BMI
 - Hyperlaxity
 - ACL size
 - Notch width
 - Posterior tibial slope
 - Landing mechanics
 - Neuromuscular factors
 - Genetics
 - Hormonal factors
Extrinsic Risk Factors

• Has not been proven in literature

• 15 year surveillance in NCAA, no change in rates of ACL injury for men or females29

• Single study has found higher rates in females, not males, on artificial surfaces30

• Non-sex-specific: shoe/floor interface, weather, bracing 9,30
 – More cleats, larger cleats, turf, dry climate, etc
Intrinsic Risk Factors: Q-Angle

- Angle formed by a line drawn from the ASIS to central patella, and line drawn from central patella to tibial tubercle

- Larger in females
 - Supine: 2.7 to 5.8 degrees larger
 - Standing: 3.4 to 4.9 degrees larger

- Hypothesized to increase lateral force vector via quad and predispose ACL

- Static Q-angles not predictive of knee valgus or ACL risk
Intrinsic Risk Factors: Hyperlaxity

- Females have increased generalized hyperlaxity compared to male counterparts\(^\text{14}\)
 - Both sagittal (hyperextension) and coronal (V/V)

- After puberty, flexibility decreases in boys, not girls\(^\text{33}\)
 - Sit and Reach tests increase in girls, decrease in boys\(^\text{34}\)
 - Knee abduction (valgus) increases during female puberty

- Knee flexibility\(^\text{35}\)
 - 47 human cadavers, robotic system to test flexibility
 - Female knees with increased
 - Internal rotation laxity
 - Valgus laxity
 - Anterior laxity - 1.3mm average, only at 50 degrees of flexion
 - Male knees with increased IR and valgus stiffness

Figure 1. Brighton’s modification of the Carter and Wilkinson scoring system. Give yourself 1 point for each of the maneuvers you can do, up to a maximum of 9 points.
Intrinsic Risk Factors: Hyperlaxity

- ACL injured females with more knee recurvatum and increased ability to touch palms to floor\(^{14}\)

- Women with generalized joint laxity\(^{32}\)
 - 2.7 x greater risk of ACL injury

- Laxity not just in the knee
 - Increased foot laxity\(^{36,37}\)
 - navicular drop
 - tibial translation
Intrinsic Risk Factors: ACL Size

- Standardized for BW, females have smaller ACL\(^9\)

- Female ACLs demonstrated to have:
 - Less collagen fibrils per unit area\(^38\)
 - Smaller tensile elastic modulus\(^39\)
 - BUT – neither linked to increased ACL tears

- Dienst et al, 2007\(^40\)
 - Females with thinner ACL midsubstance
 - Correlated with notch width size

- Anderson et al, 2001\(^41\)
 - Female ACL smaller than men, but no link to NW
 - Conclusion that tear rate due to multiple intrinsic factors
Intrinsic Risk Factors: Landing Mechanics

• Female athletes demonstrate:
 – Increased knee valgus angles in landing/cutting
 – Higher knee extensor moments
 – Decreased knee flexion angles in landing
 – Decreased strength in abductors, glute medius
 – Increased lateral trunk angle

• These factors result in increased anterior shear force vectors and compression force vectors which places the ACL at risk.
Intrinsic Risk Factors: Landing Mechanics

- Hewett et al, 2005
 - Cohort analysis of 205 female athletes’ landing mechanics
 - Preseason joint angle and moment analysis
 - 9 ACL injuries
 - Significantly different posture, loading
 - Knee abduction angle 8 degrees > controls
 - 2.5 x greater abduction moment
 - 20% higher GRF
 - Stance time 16% shorter
 - Knee abduction moment predicted ACL injury
 - 72% specificity
 - 78% sensitivity
Intrinsic Risk Factors: Landing Mechanics

- Hewett et al, 2009; landing video analysis53
 - Mean lateral trunk angle higher in females than males in ACL injuries
 - 9.3 degrees in ACL injured, 14 degrees in controls
 - CoM displaced to lateral side of knee
 - Increases lateral compartment axial forces
 - Increased abduction moment, valgus landing

- Myer et al, 201554
 - Knee abduction moment above 25.3Nm associated with 6.8% ACL injury risk vs. 0.4% risk if below value
 - ACL injured females
 - Increased knee abduction moment
 - Decreased hamstring to quad strength ratio
Intrinsic Risk Factors: Biomechanics

• Compared to males, females land
 – More erect, More knee valgus, More external rotation

• LE is a kinetic chain that starts in the core57
 – Efficient movement, knee stability, energy transfer
 – Weak gluts \rightarrow increased valgus landing
 – Poor hip control \rightarrow increased knee loading

• Zazulak et al, 200758
 – 277 collegiate athletes
 – Core weakness predicted knee injury
 • 90\% sensitive, 56\% specific for female ACL injury
 – Poor core proprioception predicted female knee injury59
Intrinsic Risk Factors: Genetics

- Patients with ACL tears ~2x as likely as non-injured to have a family member w/ ACL\(^60\)

- Link identified in female twins\(^61\)
 - Familial disposition, mm imbalance, knee stability

- Collagen Genotypes\(^62\)
 - COL5A1 – CC genotype lower in women w/ ACL injury

- Johnson et al, 2015\(^63\)
 - Biopsy samples of torn ACLs, 7 female 7 male
 - ACAN (aggrecan), FMODE (fibromodulin) up in females
 - WISP2 (WNT protein) down regulated in female ACL tear
Intrinsic Risk Factors: Other

• **Hormonal**
 – Menstrual cycle impact on ACL injury risk unclear. No modifications recommended at this time based on menstrual cycle.

 – Estrogen receptors are present on ACL fibroblasts, but literature unclear on effect\(^9\)
 • Believed to negatively effect tensile properties

 – Dragoo et al, 2011\(^68\)
 • Elite collegiate female athletes
 • Relaxin > 6.0pg/mL \(\rightarrow\) 4 x ACL tear risk

• **Previous Injury**

• **Anatomic factors**
 • Notch width, posterior tibial slope, knee valgus, subtalar joint motion
ACL Tears in Females: Treatment Implications

• Lack of strong data supporting techniques specific to female ACL reconstruction

• Risk Factors summarized as:
 – Playing with “knock knee” position
 – Decreased hamstring strength
 – Reduced hip and knee ROM
 – MULTIFACTORIAL intrinsic risk factors
ACL Tears in Females: Prevention Strategies

- Strengthening, proprioception, motion training, repetition and routine forming
- **Strengthening alone is not enough!**

- Many studies have aimed to investigate the practicality and success of various training programs
- Vertical drop jump test is common
 - Drop from box, immediate max vertical
 - Screening usefulness questioned recently

[Image of a series of exercises labeled A to E]
ACL Tears in Females: Prevention Strategies

- **Hewett et al, 1999**
 - First study to demonstrate neuromuscular training (NMT) reduces ACL injury risk
 - Prospective cohort study, HS female athletes
 - 6 weeks NMT, 3 x week, 60-90min/session
 - Non-contact ACL risk lower in trained females
 - 72% reduction when compared to untrained
 - None sustained ACL tears

- Components of effective interventions
 - Plyometrics
 - Technique training
 - Training > 1 x week
 - Duration of training > 6 weeks
ACL Tears in Females: Prevention Strategies

- **Mykleburst et al, 2003**
 - Prospective cohort study over 3 seasons
 - Norwegian female handball players, >850
 - Intervention occurred in seasons 2 and 3
 - 29 ACL injuries in first season (control)
 - 23 ACL injuries in 2\(^{nd}\) season, 17 injuries in 3\(^{rd}\) season
 - **Significant reduction in NC-ACL tears**
 - Elite division athletes with training
 - Significant reduction in overall ACL injuries
 - When normalized for exposure, **36% lower risk**
 - Compliance an issue
 - High drop out rates

- **Lim et al, 2009**
 - Improved strength and flexibility in female basketball players s/p NMT intervention
ACL Tears in Females: Prevention Strategies

- **Mandelbaum et al., 2005**
 - Cohort study, female soccer, 2 seasons
 - Over 1000 players vs matched controls
 - Significant decrease in ACL tear incidence per 1000 player-exposers in trained group
 - Overall, 6 tears in trained, 67 in untrained

- **Petersen et al., 2005**
 - Female German handball athletes
 - 10 teams vs 10 controls
 - Balance board, jumps, bounce mat
 - ACL injury risk 80% lower in trained (trend)
ACL Tears in Females: Prevention Strategies

- **Hewett et al, 2017**
 - Targeted NMT (TNMT)
 - No running, 5 performance levels
 - Supervised by athletic trainer; generalizable
 - TNMT significantly improved
 - Hip control
 - Peak trunk flexion
 - High risk athletes improved more

- **Pollard et al, 2017**
 - 30 female soccer players; baseline info
 - 12 week participation in NMT intervention
 - Improved knee landing mechanics, trunk flexion, energy absorption at both knee and hip
ACL Tears in Females: Prevention Strategies

AAOS Appropriate Use Criteria

“Moderate” strength evidence to support use according to AAOS Evidence Based Clinical Guideline Management of Anterior Cruciate Ligament Injuries

<table>
<thead>
<tr>
<th>Indication Profile</th>
<th>Procedure Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Supervised ACL Prevention Program</td>
</tr>
<tr>
<td>Pubertal Status/Maturity</td>
<td></td>
</tr>
<tr>
<td>Level of Activity</td>
<td></td>
</tr>
<tr>
<td>Sports Participation</td>
<td></td>
</tr>
<tr>
<td>Athlete Risk, Per Screening Evaluation</td>
<td></td>
</tr>
</tbody>
</table>

- Sex: Male, Female
- Pubertal Status/Maturity: Pre-Pubertal, Pubertal, Post-Pubertal/Mature
- Level of Activity: Competitive athlete, Recreational athlete
- Athlete Risk, Per Screening Evaluation: High Risk, Low Risk

Submit
ACL Tears in Females: Prevention Strategies

- Length of program matters!\(^{92}\)
 - Padua et al, 2012
 - One group performed program for 3 mo
 - One group performed program for 9 mo
 - Both improved performance, but only extended duration group retained improvements 3 months s/p stopping program

- Training fades with discontinuation

- Maintenance program important to make part of training!
ACL Tears in Females: Prevention Strategies

• Most effective in93,94
 – Younger patients
 – Higher risk athletes
 – Elite performance athletes

• Components of a valuable program
 – Dynamic strengthening of LE kinetic chain
 – Plyometrics, proprioceptive training
 – Technique training
 – Multiple times a week
 • 10 minutes / 3 x week minimum recommendation
 – Preseason implementation
 – Continued throughout season
 – Longer duration of intervention
 – Identify at risk players
FIFA 11: Apply to Other Sports

• ACL injury prevention program initially for soccer players
• 10-15 min warm-up
• Core stabilization, eccentric training of thigh muscles, proprioceptive training, dynamic stabilization and plyometrics.
• Studying Applicability to other sports
ACL Tears in Females: The Future

• Wearable Technology?95
 – Decker et al, 2016
 – Device measures posture and GRF
 – Improvements; NNT = 92

• Better, longer-term population based studies on the relationship between genetics, hormonal environment and ACL injuries in females

• Medium and long term outcomes with prevention strategies
ACL Injuries in Female Athletes: Summary

- Female athletes are at greater risk for ACL injury
- Risk factors are multifactorial
- Prevention strategies can identify high risk athletes and help to reduce ACL injury risk
- Future studies will help guide better prevention and treatment programs
Thank you

- Questions?
- patrickb@uognj.com
References

- Snaebjornsson T et al. Adolescents and female patients are at increased risk for contralateral anterior cruciate ligament reconstruction: a cohort study from the Swedish National Knee Ligament Register based on 17,682 patients. Knee Surg Sports Traumatol Arthrosc. 2017
References

References

- Leppanen M et al. Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am J Sports Med. 2016; 45(2)
- Herzberg et al. The effect of menstrual cycle and contraceptives on ACL injuries and laxity: A systematic review and meta-analysis. OJSM. 2017:5(7)
References

- Pollard CD et al. ACL injury prevention training results in modification of hip and knee mechanics during a drop-landing task. OJSM. 2017; 5(9)